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BAYESIAN INTERPOLATION AND DECONVOLUTION

(;. LARRY UI 1ET TIOlST
Washington Unimrsity
Department of (li itstry
Campus Box 1134
One B,,ookings l)rivc
St. Louis, Missouri 63130-4899

AIISTRACT. The deconvolution problem is addressed in stages beginning with the interpolation
problern when little prior information is available and proceeding to the full deconvolution problem
when a great deal of prior information is available. The results of the calculations indicate that good
solutions to the deconvolution problem are available even when limited prior information is available
and that these results overlap those obtained when a great deal of prior information is available.
The difference between them is that the use of uninformative priors causes large uncertainties in
the estimated signal, while highly informative priors decreases the uncertainties in the estimated
signal.

Introduction

['hv deconvolution proble,n is important in many branches of science and engineering. In this
pmlelomI the "image" or signal is convolved with a smearing function. This function is also cadlld
an impulse response function because the ideal noiseiess signal that one would obtain in response
to ;iin input impulse or delta function is the smearing function for detector. In linear svsteins
the ,ttput from an arbitrary input may be written as a convolution or average of the true signal
,ov1 i, ved with the iinptulse response function. Averaging loses information. In addition the signal
is olUtanlui nated with noise, consequently there is no unique way to deconvolve the signal from tOe
imphidse response function: rather one must imake inferences about the true signal. In this paper.
Ihe di-,ovoliltioni probhlemh is studied beginning with the simplest l:abv" version of this problein

An d plr(oceeoding through stages to nmore an(d more complex versions of hlie problem until, finallY, the
fill deronvollition problem is analyzed. At the end of each stage, nuinerical examples are supp)lied
to illustrate the calculations.

In the deconvolution problenm addressed here, there is a data set I) which is postiulated to
(ontain a signal y(t) plus additive noise:

(00) = 0(1) +-n 1

wlhere u, r"lpr'sonts thlie noise. Th'Iue data Di atr a collection of N discrete data samplies. 1)
f,( T.d(t )} lhe sig, i;d Y(1) is obtained fronm a -convolution" intiepral of the folrm

(') [- ,rrIT -. r )1(-) (2)

v. t h, r,, I( i , 1 h i, i lltuiu l>' , ri'.piisi' function. ild 1, iý- the iu11kluownl ý-lrrl;|]. [lhe (11t;i ]) li;k., h I
I i.tt f,'u I,- q p,' ,lilliv il ,,,u .,+. " I/th , h 1 i l e I it-+ ln th ,f i ,fi ,ri • vk ill t.,kv, ri, ri,)t t ," o f Id hf i:ý ;ti:,i I+, .' + i



mav iw v,',norahized to higher dinrunsions by simply relabeling tlie higher dinensional quantities.

"Ihl sitzr, that appears in the detector, y(t), will be thoug;ht of as a time series, although again

the ra, hnitics takes no iot ice, of this. and one could, for example. interpret I as position, as one

would ini an i Thage. iprobhlein is to make the best inference possible for the inknown signal.

uL(t), fr<mi t.e data and the prior information.

\Vhin the impulse response function r(r) is a I)irac delta function

r(t - T) = b(I -- r), (3)

the ()nv,\lition integral mnaty be evaluated and one obtains

d(t,) = u(t 1 ) + nI. (4)

The decoinvolution problem has reduced to the "data interpolation" problem. C.carly if one is to
understand the deconvolution problem, then one must have a firm understanding of the interpolation
problf rn. For this reason the data interpolation problem will be studied in the first two sections of
this paper.

In the first section, the interpolation problem is addressed, and probability theory will be used
to derive the posterior probability for the value of an arbitrary pixel given the data and the prior
information. In this baby version of the problem the prior information will be that the signal shouhl
be smoot h.

In tie second section, the analysis of the interpolationi problem continu.es with the use of more
informative prior information. This more informative prior information will include inforrmation
about t.he functional form of the signal, as well as information about the first and second derivatives.
At the ,-od of each sections several numerical examples are given.

In the third section, the full deconvolution problem is addressed using the techniques and
procedures developed in the first two sections. Again numerical examples are included at the end
of this section. Then in the fourth section the deconvolution is generalized to include more general
types of prior information. Additionally, more efficient means of estimating the signal and the
uncert.anty in the estimate are developed.

1 Data Interpolation - Second Derivative Prior Information

In the data interpolation problem, there is a signal U. This signal is to be estimated at a num
bet of discrete points. These discrete points will be called pixels. These pixels will be labeled
{u0 .... , 0 ,+ I where

v -[1( N )+ 1,()

is the number of the pixel corresponding to the l;tst data value, and pixel ui corresponds to the first
data valute. The pixels labeled t1 ..... 1,v will be called interior pixels; while un, and Uv+l will be

called bounidary pixels. These boundary pixels are special because they must be handled differently.
The Itixl density factor, 0. indicates the density ,of t lie pixels relative to the data. If / = I there is
a one to one correspondentce boeween the pixels and the data (excluiding the two boundary pixels).

If .= 2, there are two pixels for every vdata v;lue. etc. The discrete filnes t, correspond to I1li

pixels. not. the data. So the sampling times for the data are given by t ij t, ,./ .2..4.. t.}, and

the data elements will also he Ii ol, d to correspond lo the pixels: (iod,d34 W1. • -,'1. d,,}. The,
colk,,-tiin of all of the datl will hl. lahbeld ;ts I). while Ilie -oll-ction ,,f .ll oh the pi xl will

.1•,' ,' -,



I'hi, data I) •l sist, of valuhs of the signal U plus noise:

u, ,= + i , +i l 1, -,i + 1,.2.+ .+} (6)

where n, is the v;due o• a randoinly varying component that one has no way to predict. ThIf problem

is to inake the best estimate of any one of the pixels possible. Because we will estimate an arbitrary
pixel u,, we will have estimated all of them by letting j take on any value {0 < j _ v + I }. From

the standpoint of probability theory, all of the information relevant to this inference is cont.ined in

a probability density function: P(ujID, I), the probability that the signal has value u,, given the

data and the prior information I. This probability is computed using the sum rule

P(u1 ID, I) liLt .... P(UID, I), (7)
J

where P(UID, I) is the joint probability for all of the pixel values. The integrals are over all pixel
values, except uj.

Bayes theorem [1] may be used to factor P(IJJD, I) to obtain

P(ujID, I) = . P(U[I)P(DIU, )(8)P(DII)(8

where 1'((UII) i- the joint prior probability for all the pixel values, IP(D1U, I) is the probability for

the data given the pixel values, and P(DII) is a nornialization constant.
Making the standard assumptions about the noise, the probability for the data given U is just

the likelihood function

P(DIa,U,I) = (2 rer)- texp E (d, - u,)2}, (9)

by

where the standard deviation of the noise, a, has been added to the direct probability for the data

in a way that indicates its value is known. Later, the rules of probability theory will be applied to
rmnove (T from the problem, if its actual value is unknown. The index i [on the sum in El"q. (9)],
moans that i starts at I and goes to v in step., of f3. Substituting the direct probability into the

p)osterior probability, Eq. (8), and assuming normalization will occur at the end of the calculation,
01141 obtains

I'(u),•, D, .) o J..dui. P(UJI)a-IVexp{-- Z(d, - ui)2 . (10)

by 11

The p)roblem has been reduced to specifying the prior probability, P(UI1).

If one were to ignore the prior, as one would using maximum likelihood, then all of the pixels values
associated with the data values are estimated to be equal to the data. uj = d•, while all of the interpolation
pixels are estimated to be zero. This is the maximum likelihood or least squares solution to this problem.
But probability theory automatically tells one this is not correct. This weighted average will be very
difficult from the maximum likelihood solution. And this difference is maintained even in the limit or
very uninformative prior information.

For any given problem there could be a great deal of prior information available. For example, if
the data were the output front a continuous wave radar, then the signal will look highly ! inusoidal;



yet significant deviations will occur near the beginning and ending of the signal. If the radar were a
pulsed radar, the signal would, at least superficially, he like the derivative of a Gaussian. Again there
could be significant deviations. This information is qualitatively different from that normally associated
with a model, where the prior information insists that the signal must be of a certain functional form and
any deviations from it are to be considered noise. Here the signal should be allowed to make deviatons
from the functional forms when the data shows evidence for such deviations. This type of pri, r
information will be called "soft" because we do not insist that the signal have this functional form.

In addition to this soft prior information about the functional form of the signal. one might kno•k
some general characteristics about the signal. For example, the signal might be generated by some
analog-ue electronics. Electronics never generates perfectly sharp signals: it always averages things out
Couid smoothness be used as "soft" prior information?

The answer to this question is yes! It is possible to include both types of "soft" prior informatio)n
the calculation. Probability theory can be told that the signal is more or less sinusoidal. witL.:
insisting that it be sinusoidal, just as it will be possible to tell probability theory that the signal hhoulJ d
smooth 'w•ith insisting that the signal must be smooth. To see how to do this. the interpolation prohic::-
wijl he investigated using both of these types ot "soft" prior information. We begin by including -r:, r
inrormation about the "smoothness" of the signal. and then in the next section proceed to include 'O2
intcrmation about the functional form of the signal.

1.1 Constraining The Second Derivative

In the traditional interpolation problem, the data is assumed noiseless and one is trying to inter-
polate between data values. The criteria used in splines is typically minimum arc length, and one
seeks the ,hortest interpolation function. Here noise is allowed into the problem. This noise could
be either positive or negative and its effect is to make the data "jitter" .. round the "signal" in
a random way. This jitter should be suppressed as much as possible. Mathematically this jitter
corresponds to a rapidly varying second derivative. It can he suppressed if the second derivative of
the signal can. in some sense, be made "small."

The data are sampled at discrete times. The first and second derivatives are not defined for
discrete functions. However, one can define analogous quantities which reduce to the first and
second d1erivative as the sampling density goes to infinity. The first derivative of a continuous
function Tnav be defined as

(IfMf(t 4- A) f(t- A)- lint (11)
dt A-0o 2A

For a (iscretely sampled function this becomes

df(t,) f(t, + A - f(t, - (12
di, '2A

where fIt, + A) = f(t,+, ) is the function at the forward sampling time. f(t, -. A) f f(f,- ) is the
function at the backward sampling time, and

A - f1-t-+l - t, 1, - /,-1 (13)

is tie ý,arnpling time. It isi clear from this definition that the discrete first dorivative is only an
appr,,xiiii.ition. This approximation is accurate Ito order A. So if delta is 01.01. i.e.. if data wert.
coil,, ,r'd ,*v'rv 0.01 srcondsr . •h,,n lhe (•scrot,' fir,,t derivative will be ac,(hrdte i to f ) 01.



l'he sec(tld derivdti.,e i- just a, derivative of a derivative and is defined as

f(t + 2A) - f(t) f(t) - f(t - 2A)
2 f(t) - lir 2,A - 2A 14)

dt 2  A-.o 2 A

Thls ,aII b)e rewritten as

d'2 f(t) f(t + 2A) + f.(t - 2A) - 2f(t)

dt 2  A-o 4A 2  (15)

The corresponding equation for a discretely sampled signal is given bN

d2 f(t,) f(ti+t ) + f(t,.1) - 2f(ti)

dt2  = A 2  (16)

Note that this approximation is accurate to order A 2 , so if A is small, second derivatives my be
evaluated very precisely, provided sufficient machine accuracy is available.

Now that we have a definition of the discrete second derivative, the prior information, that it
must be "small" must be translated into a prior probability P(UII). But the second derivative can

be positive or negative. Additionally, the second derivative is defined at every data point, so what
is meant by "small"? Here "small' will mean that the mean-square value of the second difference
shi hI I)e small:

E [i 1j+j + nj_1 - 211j h2 (17)
J=i

where b2 is the total second difference. This equation will be referred to as a constraint on the
scond derivative for reasons that will become apparent shortly. The quantity 6, is a measure of
the "smallness" of the second derivative. When h is large, large jitter is allowed and the signal
will be estimated to be the data values. When h -, 0, no jitter is allowed, and the signal will be
('stiM;te~d to he constant. Somewhere between these extreme values is one which will suppress the
jitter without supplressing the signal.

Note that this conrstraint introduces other l)ararieters into the problem. If for example i3
1, the: constraint introduces three new parameters: two "boundary" pixels, uO and u,+,, and a
rgildarizatioi paramieter which will be called t an(d is related to 62. If (1 > 1, the constraint also
intri•,lices lhe -interpolation" pixels into the l)rob)lem.

The procress of converting Eq. (17) into a prior probability density function is a straightforward
application of the principle of maximum entropy and results in the assignment of a Gaussian prior
Prol)abili ty:

.... ....... ,ICI exp - [ui+i + L.-I - 2u]2} (18)
I-2(Y2 ý=I

where #2 /1(12 is the Lagrangue multiplier from the maximnum entropy calculation. The fractional
Va riaice 2( will be used to control the amount ,f smoothing and is related to the mean-squar,'
. lse til derivative.

I hrre, additional p.r;iiimtv'rs: uf) and u1,+l, the boundarry pix.ls, and lhe fractional variaTce ,
h)ave cntered Ile pr(oleIn. Thlese parameters were adhded •to tw prior ini a way that indicate.s that
tlwir viluie' arre given. Of c(urse iii a real problerrm ihir values will iot lI)e known arid inf,,rirces
ilutis hr rin;d,' amitu) 1l,'ii . All three o)f these palra)lue,.ers ire nniisairrce, ili Ohle senSe that (r),. w\1nlI1
Ilk,. ii, fnrr)ml.t,' th,. pr hi rurm iril, nl),. en it o)f tih'ir vmli,. 1bis u1.W', h", dIe-11 r .,djil fol ,,,)..),,

',, :s hil f , ll II ,)r ' ,)h' hb , pier r to deal will.



WLhat we have derived so far is the prior probability for the interior pixels given lhe bIoundar,,'

pixvis. What is needed is the prior probability for all of the pixels. Fo compute this the joint prior

foir ;til of the pixels is fact-or,,ul Using the prodl1mct rid e to obtain:

P(uo1. .... 1.cl) .P..Im, u,.+II~, l)P(uI ,..., i•tj i,,+if,,, 1) .19)

whert P(uo ... . u,+ aIt,aT) is the joint prior for the interior and boundary pixels; tihe joint prob
abilitv for the interior pixels given the boundary pixels, P(uj .... ,UI1uo, UV+I, f, 0. I), is given bk
Eq.t 18) and P(uo,u,+I(, a. 1) is the prior probability for the boundary pixels.

TO assign the prior probability for these two boundary pixels, I'(un, 7 1 ,+i V. a, I), a different

interpretation of the second derivative will be used. Suppose it is known that adjacent pixels
-hould be approximately equal:

u i + ('20)
2

This may be rewritten as

U:i+I + U,-I - 2ui 0. (21)

Biut this is essentially just the statement that the second derivative should be small. So constrain-

ing the second derivative to be small is equivalent to asserting that neighboring pixels should ble
approximately equal. On the boundary this could be interpreted as

u0 1I and itv Uv+l. (22)

Converting this prior information into a prior probability for uo, one obtains

(2 )
P(uo0ia, I) o( exp 2d (uo - ILI)2, (23)

and similarly for u,+,

P(uI,+l+If,, ,) 0 exp -{ 2 (U,+1 - u',)2 } (24)

To combine these priors. one uses the product rule to factor P(uii, u,,+, I. a, 1), and assuming
independence one obtains:

'( I(, uV÷. 1f, a,. I) = t'(uolf, a, I)P(u +l If a, 1). (25)

Substituting for P(uola.I1) and P(u,+ It,a, 1), one obtains

2 '
P(uo. u,,.÷_1,.f. 1) o, exp -2 j'un - ?1 - 2'"+2 - U V12 (26)

as the joint prior probability for '"e boundary pixels. Substituting the joint prior for the boundary

pixeks. Eq. (26), and th, prior for the interior pixels, Eq. (18), into the prior probability for all of
the pixels including the boundary pixels, one obtains

P(11().... 1U,+ 4 ,,,aI) X exp II [o- ,,) - 2a2  V] -,, 2}

2(27)

S"" ) "f ,2 4



Ij Irs prrI I Anh Ir A- r'wri t I i i

P( hIn [AOit~r ... x1) k III k.(2-SSI2 a
hIre, {\A. A,,+ } are the ,igenvaltus of the ,matrix Rkt dheined a."

"2 -- I ..t.). . 0

- At 6 -4 1 0

1 --4 6 -.1 I "

(0 1 -4 6 --4 1

Rk= E (0_< k,_< v + 1). (29)

. -4 6 -- 1 1 0

"1 -4 6 -4 1

I-A4 6 -3
0 ... ... ... ... 0 I - 23

Note that in writing thre prior in this form, it has been implicitly a;ssimiod that the Rk. matrix
ii niot singular. As this prior is written, this is not the case! The 1ik matrix has one sin.ular
eiernv vatue. Apparently one of the two boundary c'oniditions was redundiant. This problem must be
r,(uolv,,d before any niuierical calculations can bw done. The condition that the boundary pixels
s,,ruhl be' aplrroximaItly iqual to the interior lpixl., at the boundary be maintained. This can he
done by making a slight. change in the boundary conditions:

1) • 0.999ul and 'IN ý 1.001 ul,,-. (30)

N aki ýig thi Is slight chanige removes the singular +igenvalue and allows tie prior to be trormaiized.
witI l(, t changing the spirit, of the boundary condition.

1.2 1 limitating Nuisance Parameters

N,,w I th.t tIh prior i ha. v hn s.icitiedl. it rudy be srlistit.rted into thte lp sterior probability f,(r pixel

P'( it ,., 1), 1) , . ,/u,.2 [., . .% ,+ •(T v + + ) +

2 1'
× "×XP -2,2 ý:lE (3 )k-ii 1=:,i31

ex 1~) N-•2 --

by ,'+

lh iiter. .Is ire over atl pixets. except z j j. There are r' + 1 integrals to evaluate.
to ,val ate ies,, iiit'erat. he t, exponent ii the likelihood is sqiuar,,d to obtain:

I(~~~~~~~ (A TP! lt , 1 I~ - W+i'+4 2) -4 2
I ' '+-IN +' i,-I

P ( , 1 , 1 . . ,l t, .. .\ ...[N,,r I i, T ,

I 32N 2oiI

'9 , • l



W\ r.f •' t e . leall-s(IllaIr* (hIfl vaLhle, deliin':l ;I.s

I,
42 -.\' ,.2.j3,

I;

hy d

and thif intoraction matrix yAt is defined as

!kt E 'Rki + S.ki 0 < k,1 <,+1. (3v1)

Th mat rix Sqki is diagonal and defined as

k I If k = I and mod(k - 1,/1) = 0
,%,t =(35)

0 otherwise,

where 'imod(k - 1,03) = 0" means that (k - 1) is evenly divisible by 3.
fhiere is no integral over uj, consequently uj behaves like a constant. Separating uj from the

inte,,ralion variables one has

P(ujIj,o D, I) x dui... [A(,... A,,+,]-(N+v+2),v+2

f -X UIZ + gjjuj

V+J (3i)

ex Cp~--[> 3~u -,2 2 [d -Jii1]
S1)

k¢t# Iti by f3

where
1 ifj {1,l + 1,213 + 1( .. v

0 otherwise.

Now that the dependence on uj has been soparitted from the integration variables, the integrals
may be done by the following change of variables:

t,+

wherv tIh 7uL are given by

v+ 
I

Ilk : 2 (k X j), (39)

and A, I.- the ith eigenvaluo '4 the wjth cofactor of the Yk inatrix, 'q. (311). and c. is thlie kth.i
coiln)r(init of its zth eigepliociar. As a romindir, ilehe jth cofactor of a iirf. mami- 0rix ,To ran , '?2
is a ,puiv,' matrix of rank r, i 1i-4 If utor 1, frma ed b1v doltiin,, O oh,, r i dw al )l,,liIII

from I, .I ' ;# t 1 1 111 i in i' ' wh-ct or mi ;irix hli indii ,', hay,' n, ,I !,.,'n r, kizl.,l: Il,

ý-ti[k 71ift Il,,n i¢ lt, ,,,,, .o-r, thi .•h lo,'m m ) , l g e xi i.. ,I-111-1 m l ho :-,'-.ipp*.d In ýf
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"..ii t+lLd? . "')J I hiI.' will hI,. Iin, d il, thie equations Whole+ a(pp)licah le. lI h,, now integration variables
hliv, the property th;.t

v+1
r=__0 .glkci , = A I'.,, (•,t ),1 (40)

411(1j

V+1

E__•keik = Al, (il j)
k---o
k#j

where 61, is the Kronecker delta function. The volume element of the transformation is given by

dAI...dA ldA+ ... dA+ duo...dujdu+.du+. (42)

I • +1 A/V+ 1

Making the change of "ariables and introducing a new quantity hl(uj):

hi1(u,) E .. [di - g~juij~cj (1 j) (43i)
1v=

by #
it-i

on+e ohtains

( N d2 
- 2dJ u/"7z +l gff• u' - ' Il('' "h(u

P (u,(j ,a , D , I) oc Y- -(N +v+ 2)IFv+ 2 exp -2 a ,2 - hju+)

V+ 1 l (44)

X [-.dAi .ep- [A. - h,(,

where the square on the quadratic terms was completed, some factors of 2•r were dropped, the
,tot, llatc (which is a ,ouustallt here) was also dropped, The quantity h((uj) hi(uj) is defined as

V+i

h(ui) " h1(u1) E hi(I,') 2 . (15)

t~j

Ivaluatingr the v + I integrals gives a factor of (27ra'2)(v+l)/2, and one obtains

(N+I)(VNd'V - 2djujz + gjju2 - h(uj), h (u,)
(I',,DI)x.aN+l)(Lv+2ex p {.---_ 2 h7,2 u} (46)

;is thle posterior prohbability for the jth pixel. Ifas assumed so far, tile variance of the noise and the
value of the fractional variance ( are actually known, then there are a number of additional terms
that are constants and these constants will cancel when tile distribution is normalized. Dropping

lie'ss' tenrmis. mie obtains

11 n'Xe p 2dJr1'_- YI~j2 t•+- h(uj). N IL)) +.17)
J'(i 1 ja~. U, I)) , e {Ii( 2r72

,:, he li ste+rior prohafihlltv oI r 1. lit jt h plixel 'l vion I lhe sta•n ardl (lviatiou ofithe, hi~ou' . lie ':,:ortir;itl

". 1 I,,I1w f ~t~ 1),. iid the, p~ilr uuiiru atio i



1.3 E"liMiniating a As A Nuisance PtIrameter

In niost real problems neither a nor ( are known: they are nuisance parameters and should be

treated as such. This is easy for or, but t is more difli-cult to deal with. T,) make inferences about

Uj indpndent of (r we apply the sum rule to ol)tain

P'(ujlI, D, I) = dal'(uj,aI(, D, 1). (.1)

The right-hand-side of this equation may be factored to obtain

P(uj,, a, D,l) = P(u1 ,rrjI)P(Dui,,a,,(,I)

= P(u•,I)P('Il)P(Dluj, cr,(,1) (49)

= P(aI1)P(ujID,ao,I,)

where it was assumed that the prior probability, P(uj, aVI,I), was independent of E and that

P(u), alI) = P(ujII)P(acI). Inserting this result into Eq. (48) one obtains

P(ujl-, D, I) =/fdoP(,,I )P(ujlY,,(, D,1) (0

where P'(a l) is the prior probability for the variance, and P(uja,(, D, I) is proportional to Eq. (.4(i).

The posterior probability for uj may be computed provided a prior is assigned to the noise,

standard deviation. Having no specific information about or, a Jeffreys prior I/a (4] is assigned to

obtain:

P(uilj, D,I)(x I Fda&-Nexp -e- [NT - 2duz + gjiu- h(u). h(uj)] . (51)

Evaluating the integral, one obtains

P(uj.,,D, I)a lu I +24 1- (52)

This is a Student t-distribution, and it is this result that is applied in the numerical examples.

Suppose a simple experiment has been run for 100 seconds and a data item was gathered every

second, thus obtaining N = 100 data samples. Suppose the data gathered in this experiment

looked like that shown in Fig. I (a constant signal of value 5, plus Gaussian white noise of standard
deviation of 1). In the calculation so far, only one pixel may be estimated at a time. But any

pixel may ihe estimated, so all of them may be estimated. In this numerical example, j = 59 will

be used. At the end of the example, the results will be shown for all of the pixels. To estimate

1159 one needs only to apply the posterior probability for the pixels. But this probability density

function assumes the value of ( is known and the estimated pixel value depends on what value of f
is chosen. Before the pixel value can be estimated, a procedure must be developed that allows one
to r'stimnate or set f to a reasonable value.

1.4 Estimating The Regul.'urizer

If,,m' tlws the rules of prwle ilitv theorv vxa'cll I, he way to plrocI'd is to 11umltiplvy lth jr),,l.h tlihiv

for fh, l',. iven the vadue -f,. b)y a pmior pryllaliitv hf r ;ifind int) grate. lumloreu.uate.v. .ll,.):
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l.igtire I: lntterpodatioii [he D~ata

in] 0

0 0 0 0 0 CP q% 0 0o
0 00 00 J 0 0 00000 00 0 0 0 cp0 00 0 COp~

7- -- - - -- -CL) - - -- .-- - - ..

0 -4
_40 00 0 0 0000 00 0 0 000

C~cP 0 o 0 0 00 0 0 00

000 0 0 0 0

.-

0 10 20 30 40 50 60 70 80 90 100

Time in Sec.
Fig,- 1. The dtata contain a constant signal of value 5, phis noise of standard deviation one. The problem is
I)t, make the best estlimate of a pixel given only the information that the function must be smooth and these
data.

In tOw probleum in a very nonlinear way and evaluating the integral in closed form bas not proven
possible. However, there are approximations which will allow one to proceed and obtain results
that are nearly identical to the exact procedure. If the joint posterior probability for pixel u.59
and ,is sharply peaked, then removing the reguiarizer by integration, essentially just constrains
the regularizer to its vidue at the maximum of the joint posterior probability. If the value of
the regtidarizer near the maximum can be. determined, then ( can he constrained to this value
iii Eq. (52). The results obtained will be ntearly identical to what wvould have been obtained by
remroving fb)y integration (7].

lo det ermlinle; a reason able valute of ,' the. probability density for the regularizer wvill be0 computed.
Froni this prolbabilitY density function one canl locate the value of tfo r which the posterior is

uiiaxitizized. This IlaxiIIumII may be used in E'q. (52) to obtain die posterior probability for the
pixels. l'The estimated pixel value are dlependent onl the value of (, ~;o it is important that a value

near the most probable, value be used when estimating the pixels.
Tlo illutstrate that a good estimate of fis nece1ssa1ry, Consider Fig. 2. Here two different valu--s

of (were uised: one smnall and one large. In p~anel 2(A, (=0.01. The data values are shown as

ope circles, anid the reconstruction is shown as the solid line. The pixel estimates plotted are the
titeat or expected values (If the pixels. Thiese were conmputedl using thle procedures developed in
Section 41.1. For now it is enough to know that the values are just the ones given by the ina-xinluinl
of Owe posterior prolbahilit.Y' for the pixels, given the value of c, Eq. (52). For small ,, the prior
i i b rttatiori is essentiall 'y irrelevanit, and the pixels are estimated to he equal to the dlata valutie.

Ibis effect, is seetl '1i pa nel 2( A), where the r~colist ruction foldlows tie (Iat a almost exactly. Thel,
)lpl2()St( efle-t? occints wh''tt f-- -)u. here thre prior i.- importaut and lie data are- irrelcvarit. an~d

thi iel ;ire est itrnttelo I, be a conistant, zero. Sotmewhiere liatw'rvi ilie'. two extremne vable 1*

lc'11 w\Ilh ir -;rp 14Jru jrrI 1,1"1* tuil' probletil.



Figure 2: The Estimated Pixels As A Function Of
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Fig. 2. Panel (A) contains the data (open circles) and the estimated pixel values (solid line) for ( = 0.01
Here ( is too small and the reconstruction pays too much attention to the data. In pIanel (B), ( = 1,000.000,
and is too large; the estimated pixels (solid line) does not. pay enough attention to the data (open circles).



I't) lind t his region. tI' C(Al nputQ thC, lt(ttet r0r probiability fir I. sing the sum rul, fril
prtilaliility theory, this i.s given by

"P(H D, !V) J Iduo-.. du,+IdaI'P(7 ,aTu0..... u,+ ID, 1). (53)

'Tlh integrand can be factored using the same steps shown in Eq. (48) to obtain

P(ill), I) f I .do u,,+ daI'(T",all))(uo,..., I,a+l , D, I) (54)

where P(f,all) is the joint prior probability for ( and a. Further, J+(u, . .. , U l (, o, D, 1) can be
factored to obtain

P(eID, I) Jduo... du,,+daP((lI)P(olI) (55)
x P(uo,...,u,,+Ill,or, )P(Dic,a, uo,...,u,,+l,1)

where P(u,.. . , u,+ le,a, I) is the prior probability for all of the pixels given t, a, and the prior
infoirmation I; and( it is given by Eq. (18), P(DI(,a,nuo,.. .u,,+I,,) is the likelihood for the data
and is given by Eq. (9), and P(all) is the prior l)robability for a and was assumed independent of
(. Substituting Eq. (9) for the likelihood, Eq. (18), for the prior probability for the pixels and a
.leftrvys prior for both ( and ar one obtains:

I'(1), i) I, J duo ... du,,+Idaf)... A.+112o-

((2 Z'+1 L+I 1
X ) p _ XD -- \ V'Iklukul2r,.2 g~ E~ '

=01=oI

X exp{-7 -- [•• d[ -u,12

by

w here dh higenval ics A,,.., A,++i } must now be kept, because they are functions of
I') evaluate these v + -3 integrals (v + 2 integrals over the ui, and one over a) the quadratic in

the likelihood is expanded to obtain something very much like Eq. (32):

P((ID,I) Cx I ul,...,uv da[Ao.-.A.I+Iia-iv+N+i)(L+I

J~kkiV 2 L+1 a+I ii(57)
X exp- [NT - 2 diui + _ Zg&UkU111

1=1 k=u 1- i1 1
by 1i

%Ve1re q.lk w;Ls delined earlier in F(. (314). Unlike what was done earlier. here there are v.+2 integrals
,v,,r all of 1he u,. This no interiiediate steps are involved where the coffactor of .qk was defined.
\11 that is i,•c-,ssary is IHAt OW he q iiiatrix bIe dia•gonalizi d.

Il the pro.o.es ol doing tliese (alculations. s.verard miatrices will have t lo be diagonali/ed. And
flih, prceduros for doing .s,4 are. all e(s.sentially lhe s;ini. O)no initrodijit ; a new set of iiite riiou
v;)i ales bae.,,d oni lie >iOuwil;r- vahue decoiinpost ion of lie iiteractio iimnItrix. aid iransfori•s I),
Ihi,, flew v;lI abi,. lu f h,'-, vaIiables all oft Ilie, ( ;;I•q's..ia qiia(Jral r 1 e i1'10 1! r.&:, se'lMiraT (. and 1i)a'v I0

,i i I %iv -illv. Ho,c:., ,i ;1 ,,I lih,' ,I i tiegrafi f i ,, it,, verY "iil m ij r. Ih1w (1,I. , %i Ils ill he, ( )ll ,,, Ii -,1 .1:



0111v ih. te-oilts of the calculations given. Ini I,, caise, ;ifter h av Ing evalua edIIif, ili + 2 11itiegril>1I,
the po-,. i-ri )r probability for i IId epeii (jlel t of the pixel valures is gi veil l)V

I'(~jJA I) Jh(.-.. Aii (: ) N+n), v+I

where

h 1 (c)(59)

by '0
V+1

h(() -h(c) E hi(f)2 , (60)

{A .... ~ }, are the eigenvalues of the Rik matrix defined in Eq. (29) and A(),.. A,,+] arid cl,
are the elgenvalues and eigenvect~ors of the gik matrix dlefined in Eq. (34).

The remaining integral is very similar to what was done earlier, Eq. (52), when (T was renmoved
andl again only the results are given here

/'(1[),I Ao.*1 1  Vfl[ ~)h) (61)
(y. A 0 ..-A+ Nd2  J

Whe-n i -0, there Is effectively no prior, and( the pixel estimates go to data values. However,
when -- oo, the prior dominates and forces the second derivative to zero andl the reconstruction
goes to a constant. As (= 0 the likelihood term [the term in square brackets in Eq. (61)] is going
to infinity like CNV. HIowever, the prior term (essentially ('+') is going to zero at exactly the
same time. Somewhere between these two extreme values there lies a itiaximurn in the posterior
probability that acts as a trade off between the prior and the likelihood.

Fligure I contains a simple dlata set with N : 100 (data values. The "'signial" in these (data is ai
constant of value 5, plus additive white noise of standard deviation 1. Using the p~roceduriies derived
so far. the value of the 59'th pixel is to be estimated. As was mentioned earlier, before the value
of pixel u59 may be estimated, one must set the value of (. Using the p~osterior probability for
f, this may now be done. This probability density function is p~lotted in Fig. :3. This p~rob~ability
distribution has a well defined maximum near 70, and a mean value of approximately 93. Note
that for values of 4r smaller than 10 and larger than 270, the probability for fis essentially zero. So
whatever- value of ( is used, it. should be somewhere in these bounds.

Figuire 4 contains the posterior Probability for uy,9 given (=10,80,93. and 200. Note thiat
for the imaximnum and mean (Panels B and C), the posterior probabilities are almost Identical.
However, when (is too small (Panel A), the posterior probability is smeared out and broad; oil the
other hiand, when (is too large (Panel D), the posterior probabilit~y is too narrow. It is interesting
to note that as, ( - 0 the wid th of the posterior probability becomles large, while thle estimated
pixel valunes go to the data vajuies. Elstimating thle puixels to be equal to the dlaa Is the inaxuinuni
likelihood result. In this bimit. there is no prior information about the signal. Probability' t heory'
is warnintg you that there is no way to differentiiate between the sign-al mnid the nioise; tilie signal
could I), an vthing consistent withi the total mean -squiare data value. II t~ w lito her I limili -- X .
tleviautior- fromn a constant am'' mnot. allowed. Ilss'nit ildlv thne results, viN ito t tie nnneati -t ýImnol;ird
rle\vinin,1 (dunnlat f, 4 11v cnnnst.11t..



Figu re 3: T[he Posterior P)robabili ty for

0

0 50 100 150 200 250 300

Fig 3:Th 'im.JIsterior p~robablility for was comnputed uising the constraint, oil the second derivative. This
;)r(A)abiilit~y density functioai lei.s a well defined maximumn with a peak near z 80, and a mean value (if 93.

2 Data Interpolation - General Prior Information

Biefore proceeding to the deconvolution problem, the (data interpolation problem will be generalized
to include. other types of prior information. Three types of prior information will be included:
iniformiation about the functional form of the signal and about its first and second derivatives. As
was demonstrated in the previous section, what differentiate-, the results of a probability theory
( Alcu latiort front a iiaxilinuin likelihood or least squares calculation Is the presence of the( prior
prohahillit~v. lit the previteis, section only prior information about tite second derivative waLs used,
here three, different types of prior information will be used. To utilize all of this information there
;ire' two tasks that inutst. h~e completed: first, each of these three pieces of information must be
foimi iiiitedl into a prior probability, and second, these different priors must be combined into a

si ntelt- prior which expresses all three pieces of information.
T o see how to convert each of the three types of prior information into a prior probabilities,

,suppose the signal is known to be sinusoidal. The total difference between the signal and the data
is gi.'en by

N

Il[l, - AI os(Wif, + 19)]. (62)

What. is actually known about this difference? Would one expect, this to 1)e zero, p)ositive, (cr

nriat i ye'? If the( signal is. knowni to bie more or less si itis cidal, tOen on itaverage one woild 1('x pv ' t hli'
'hite'Ore'ce to be smiall and its value could be either f)ositive or negative'. So the prior infortitatitM 1"
ue4TIisisent with aI zero meati value: i.e., no informationi is available thti wvoild lead uts to expf)ed t his
dihI'Vr(riiice tot be eit her positive or negative upon repe~ating t lie vxpvriiiifmit mtany tiimes. Second. Ht-le
iie'.eTsqiiare dilfereru'f ( iý 1expocted 1,)lto b noizerto: i.e. '%t expetI sml det''eeviatiomis froin Ili' mmiriol.



Figiire ,1: The Posterior Probability for Pixel v.s9

.--. (A) (B-4
rz Cz

O~CO

- -

0 2 4 6 8 10 0 2 4 6 8 10

U 5 9  U 5 9

'-i CIII

CV (D)

So -C')

CD

0 2 4 6 8 10 0 2 4 6 8 10

U 5 9  U 5 9

Fig. 4. The posterior probability for 7L59 is shown for 10 panel (A), 80 panel (B), 93 panel (C),

and = 200 panel (D). Panels (IB) and (C) correspond to the peak and expected values of (.



*Ilit,,rc'n ce' Hitl iis t,'' 11 t 1hi,, diffference is not tic,.ssarir y noise, it me olv reflects our uncort ijnt•
iii tI IwiitIal fhttiim I Kda filrlt of the signal. When miaxiniurn entropy is applied, it will assign a

f;lssi ar prior to thiS hs difltfrenf . Because for a fixed tiean-square the ( aussian has highest entropy.
t1l is Ie thorfi•r, t he' least irnforirtative distribution possibhe. From the (G;aussian distribution one can

as.sigin a prior probability for the difference between the pixels and the model. For this sinusoidal
exatiple,. this probability density function is given by

2 N

li(uilA,w•.0,,c, l ,) a- NNexp) -- Y [ui - A cos(tf, +0)] , (63)~2a 
I

where the parameter ( meaisures the amount of itislit between the pixels and the model. As
mocurred in the previous example, this prior has introduced a number of additional parameters: A
an ariplitude, 0 a phase, w a frequency, and a fractional variance (2. Some of these parameters may
be known, but more likely either they will have to be eliminated from the problem, or inferences will
have to be made about them. For the time being, io assumptions will be made, and the problem
will be formulated in a way that either they may be eliminated as nuisances or inferences may be
iaule ab)out them.

2.1 Formulating The Prior Probability

Three types of prior iriforniation will be included in this generalization of the interpolation problem:
inti•intatiot on the funct'ional form, and on the first and second derivatives. These will be labeled
1i, 1.2 and 13 respectively. The prior for each of these will be formulated separately and then
c(tiibined into a single prior for use in the generalized interpolation calculation.

Infoirmation 11 will be addressed first. This information assumes that something is known
aboeut the functional form of the signal. The functional form will be written as Afl(ti), where A
is ;ii ain1plitude and, for exairple, fl(ti) might be a sinusoid. The total inean-square difference 6b
between the model anrd the pixels is given by

[u, - Af 1 (t,)]2 - . (61)

If 0,r O. the model iiust follow the functional form exactly. If 61 -- rx, then the total squared
,iff,,rnmce goes to infinity and the reconstruction will follow the data.

Using informatiomn 11 in a maxinumin entropy calculation results in a.ssigning a Gaussian l)rior

I'o.....,+,IA,(I,a, t1) cx exp I [is - Afi(t.)]2 (65)

whliv i I is the fractiontal variance associated with infoirmation 11. As was noted earber, the hirior
hit ilridictced two new paramieters: A, (I. Last, iote t hat the prior has not yet been normalized.

hiw, will I,, dlone after (combiininig the three priors.

lift mnirtion 1,2 specifies how the first derivative is. to behave. Assumiing the functional form of
the, lir-f d,,rivatliv' is tiveti by lUf 2 (t) then

>.., Iu,+i - 't,-i j 2!?f,(t,)j1 - b2 f•

rnl •\ ll u r l .r t r q v ; 1( vl a li ln ,• h~ •: u • t• ;~ n uI] , pinrl ,r p~ r o a b ili t.ý i,, lt ,w d ilfor,,t it I b , t , , h l.4 I!



niodl•,,i ',,rivative and the pix l.,:

. i'(• In ... U ?i, U ,,, 4 1 ,,Q,',l 12 )x (• •'×p -?t -- i- 2If,20,12} (67)

whore two additional parameters, B the amplitude, and 2 the fractional variance have been intro-

duced.
lnforriation 13 specifies how the second derivative is to behave. Assuming the functional forri

of the second derivative is given by Cf 3 (t1 ), one has

[ + ~ - 2 - Cf 3 (t,)] 2 = (61)

:I1

where (C is an amplitude associated with the second derivative, f 3 (t) is its functional form, and 623
is the total squared difference. Repeating the maximum entropy calculation gives

'(. ..... uVIC, un, uL,+1,(3,o',I.3) t exp {-• :. [u1 +l + -,i_-1 - 2u, - Cf.3(t:)]2 (69)

as the prior probability for the pixels given information 13, where C is the amplitude, and (2 is the
associated fractional variance.

Note that three unknown amplitudes A, B, an( (C, three fractional variances f 2 2 and , and

two boundary pixels uo have entered the problem. The three amplitudes and all of the unknown
pixels will be eliminated from the problem as nuisance parameters. In this problem it is critically

important to ensure that proper priors are used. A proper prior is one which is normalizable.
Improper priors are ones which cannot be normalized. Strictly speaking a function that cannot be

normalized is not a probability density function. Two examples of improper priors are the Jeffreys
prior and the uniform prior. The Jeffreys prior is improper when the limits on the parameter are

taken from zero to infinity. The uniform prior is improper whenever one of the limits is taken to

infinity. In spite of this the use of improper or unnormalizable prior probabilities in parameter

estimation is often convenient and harmless. However, in this problem the use of improper priors

must be avoided because the normalization factor associated with the prior docs not always cant-cl.

ConsequIntly a normalized prior must be used for A, B and C as well as for all of the pixels. Tlihes•
parameters are location parameters, and the prior which correctly express information about a

location parameter is a Gaussian. Consequently, the prior for the three amplitudes A. 11, and
will be taken as 2)3/2( ep 0 [ 2 71(0

P(A, B,C1,n, lold) = (2-ra•)'exp 0 -2a2 [A + B+ (°2} , (70)

where I -- [old was made to differentiate I from I1, 12, and 13. This prior says that the three,
amplitudes may be either positive or negative and we do not know which it is. If (0 is small,

then this prior does not express a strong opinion about the amplitudes, other than small absolute

magnitude is preferred. It will be assumed that En is set from prior information and that its actual
value is known. So long as this value is small, the only purpose served by the prior is to prevent

any sitILnular mathematics front occurring because. So whatever value is ýLssirned to tn. it will Ilf,
change Ihe results, provided it #) << a.

tuft ;,, information I, 1, and Iý can be usetd to cotnstrain the interior pixels. wYv ttaiv a•.,i 1w

u ,, 1  t,, u,,wt rain Ithe l,1i mt'damv pixels. Iufomima;ti, )i II specified a I'l tiuII,1 .d f ifm III r 1T , '-itzn:•1
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fl r,. is ni, reason thdtai f.1(11) ';aI III4t be evaluated at the bIoundary. 'lhis will give

11()I 1, 1 (X exp { j~it[,o - Afl(to)]} (71)

and

/'(u1+lI(I, !j) oC exp - u,+1 - Afi(t,+i )12 (72)

as the prior probabilities for the lower and upper boundary pixels.
Information 12 specified prior information about the first derivative. When the first derivative

was d(efined, a symmetric difference equation was written, Elq. (12). This symmetric difference can-
not be used on the boundary because it would introduce still more unknown parameters. However,
a, forward and backward first derivative can be used. For u0 one has

P(uOk2, U, 12) OC exp -I-t[u o - u0 - B! 2 (to)12}• (73)

Similarly a backward first derivative may be defined and used to formulate a prior for u 1,+. This
prior is given by

PI -1(,,(, ,1,2) Ox exp {-TIU,+] - UV -- Bf-f'(I,,4 )1 (74).12•

lBut just as occurred earlier, care must be taken here because these boundary conditions are not
e•ough to make the prior associated with 12 norinalizable. So when this prior is actually pro-
grainined the constraints will have to be modified just enough to make the matrices associated
with thein nonsingular.

The last information 1: may be used to specify a prior on the two boundary pixels. However, now
we have a functional form for the second derivative. The second derivative cannot be interpreted
is specifving that neighboring pixels be approximately equal. That interpretation was possible
,,callse the prior information assumed adjacent pixels were approximately equal. Here we could
Jlecifv Ia forward and backward second derivative. but that will not work because the forward
.,<re ,derivative at to, iN the same as the symmelric second derivative at time ti, consequently we
wihi be trying to constrain the same quantity to two different values. Without doing some'thing
mmh more complicated, there is no easy way to constrain the boundary pixels using the functional
form of the second derivative. This is not a problem, because I1 and 12 have already supplied more
than vnough information to form a normalizabl, prior for the boundary pixels.

2.2 Combining Different Prior Information

From the previous subsection there are ten probability density functions expressing prior infor-
niation about the pixels (uo,...,uv+I) and the amplitudes. What is needed is a single prior that
,,xpress the information contained in all ten of these priors. The process of combining these priors
is hi'gu n by adopting stiii, nhew notation.

There are three anlplitudes, two boundary pixels, and il interior pixels. There are v + 5 total
paramnters (excluding the three fractional variances). All of them but one are to be eliminated as
iiiisan'es. T[o facilitate this, the pixel values Jun ....... +, } and thie three amplitudes A, B and C.,
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will be takrin as a collection V. The elements. v',, are defined as:

u, if 0< i < V +,

A if i = v + 2,
Vfi = (75)Bi fi=v•+3,

C if i = v +4.

In this notation the posterior probability for the jth pixel is given by

P(I rIf0,,1,(2,(3,xa, D ) 0 dvi...P(VICo,',( 2, 3 ,Vrl)a- Nexp 1 -,=(

,by o

where the word "pixel" will be used to refer to all of the V, including the three amplitudes A,

B and ('. The three regularizers have been added to the probability density function in a way
that indicates their value are known. As was done earlier, if there values are not actually known
probability theory will be used either estimate them or remove them.

In this problem it will be assumed that the prior information is independent and the prior

probability for the pixels given the total prior information is just the product of the lprobabihties

given the individual pieces of information:

P( IV[o,Il,1 2 ,13,'old) = P(vo, ... I , ,v+ l Iold)P(vO.... VIV+l12,1oh1) (77)
x P(vo., ?,,+il/11,/oid )P(v,,+2, Vv+3, Vv+4-4[0,/old),

where '( vo,... ,v+I III, lold) specifies the prior probability for the interior and boundary pixels

given information I, P(vo, .. , v ,+'I,/old) specifies the prior given 12, '(vo,... , Vv+13,/old)

specifies the prior given 13, and P(vv+2,vz+3, v,441(0, /old) specifies the prior information for the
three amplitudes. The independence assumption was used to factor the prior in this particular
fashion.

The first three terms are all of the form P(VIk I, 11, /old)" These may be factored into a lower
boundary prior, and interior prior and an outer boundary prior:

P(VI, 1,ll'old) =f'(,,oki,1l. old)!',..... , i, 'Ollo)P(',+kl, 1,ld) (7,)

These th ret, priors were given in the previous section. This process may be repeatod for in formation
12 and 1/ with similar results. The remaining term, l'(v,+ 2 ,V,,+3,v,+4k ,iohl), was given by
Eq. (70).

For information 11, the prior probability is given by Eq. (65)

f'2 2l+
P(Vko0, l old) Oc exp 4 ; - Afi(2_1v (79)-Ir-7 - - _ [,-0 1t• ,] ,179

where the prior information for A, Eq. (70), was included in this equation. This may he rewritten
in matrix forrm as

P( V Ifo.(1, , 1. i, nld ) ,X ex) -- " 4AIVAI1-k l ?'I
2,r'



, v t he mh Iat rix IVkj is bHwPI y

1 0 0 .40 0 (

0 1

"I. . 1 0 (81)0 ... ... 0 1 A.,+;

.o ... ... ... 0,,+j A.+2

0 ... . . .... 0
0 . . . .. . . . . . . . . . .

with (0 < k,I < v + 4) and

Ah - (t.), (0 < i<V + 1)

(2 V+1 (82)

"Av+2 E '0 f JI(t,)2.

Similarly for information 12 the prior probability becomes

l'(VI,,Q, (, 12, /old ) rX exp { .2 2 (2 vi+l - 1- -21f2(1i)]2

" " exp { - - Bf 2(to)]2} (83)I - 2x ( [,r-2,

"x exp { L22 [v,+l - v - Bf2(tL+l±)]2}•

Ani in matrix form this prior is given by

(2v+4 N-+-1'(VHI(,. 2 ,aT1, 1,old) ,xp- XkV, . (84)

l'h1e IINatriX .\J is given l.v

"2 -1 -1 0 ... ....... 0 HIO 0

-I 2 0 -1 ll

-- 1 0 2 0 -1 1B2

-1 0 2 0 -I1 BI,(

-I 0 2 -1 1B,,

0 ... ... 0! -1 I 2 11,,€.

/10i 1?1 112 ... 11 I I] /I,,#. 1 I 4-•, A
0 ... ... .... .... . .... ... .... ..
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, 11i, :-, 1- .,! _ : . 1) and

1/,, --- f2(to) + f.2(t I.
III ` f2(t2) - f2(to),

II - f2(t,+l) f2(ti-I), (2 < i < v-1)

B., , f2(t+I) f2(tv-I), (86)

B,,+I = -[f 2(t.) + f2(tG+1)j,
(2 1/

/3,+3: + f2o +4 , f 2(t2 ) 2 + f2(tN+ )2.

2 =

Last, for Information 13, the prior probability for the pixels is given by

P(V (f), (3,a, 13, 'old) 0( e {a 2 _ - [vi+ + vi-I - 2vi - Cf3(ti)]2},= (87)

which can also be written as

(E2 V+4 m-4
P(V1,o, a, 13, old) Oc exp 2a2 EYk1vkv 1 (88)

with the matrix Yk.1 defined as

5 -4 1 0 ... . ... 0 0 0 (10

-4 6 -4 1 0 " C1

1 -4 6 -4 1 C2

0 1 -4 6 -4 1 . C3

Yk1' -4 6 -4 1 0 (89)

" . ". I --'4 6 -4 1 (1-I
1 -4 6 -1

0 ... ... ... ... 0 1 -4 5

0 ... ... ... ... ... . ... ... .... 0 0
0 ... ... ... ... ... . ... ... .... ... 0 0

CO C (C' C.3 ... CG- 2 C,_, C, ,+I, o 0 C,+4

where (0 L- k,l < v + 4) and

CO =- f.3(t I

CI = f(02) - 2f3(t1)
('", = 2f,(ti--2f 3 (t,) + f 3 (ti+l) (2 < I t - I)

C,, I) - 2f.3(v) (90)

I1 1
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F:inally, combining tlhese thrie priors, o(Ie obtaLis 1.1e probability for the pixels given /old" 0 I,

l2, and 13:

1 L-+4 v+4 2\ + 2 4'y IV1(1
l)(Vf(O,(l,(2,(3,T, ,I) (xexp -op 1 Y•_ • ( Wk1 +(Xk1+ (Ykl vkvd, (91)

k=--0 1=0

where 1I, 12,13,/old - /.

Before returning to the main problem, this prior must be normalized. To do this the matrix

ZAk is definied:
Zk (I - W + . + + (92)

and the fully normalized prior probability for the pixels is given by

( 3 ,0, 0 = (2r/ 1 v+4 e0 p - E EZkivkv 4  (93)

whwre {A0 . --, A,+ 4} is the product of the eigenvalues of the Zjk matrix.
The prior, Eq. (93), may now be inserted into the posterior probability for the jth pixel, Eq. (76),

to obtain:

P j(O,,(o, 2,(3,ar,D,I) ix -dv( .. a-v+5) Ao.-A

( V44 v4 -4

l, =o ) }
" ( a Next{ - W - Ji)J2

by /

where iL factor of (2r)- 2 was dropped.

2.3 Eliminating Nuisance Parameters

T'o obtain the posterior probability for vj, all of the parameters except vlj must be removed by
iitegration. There art, v + ,4 integrals that must be evaluated. These integrals are very similar
t)Itimm, evaluatod in the previous section and few of the details will he given. To evaluate these
integrals, the exponent in the likelihood, Eq. (91), is squared to obtain:

I'(( I), .. ,.,a, ID .) x 1 +* [An...(N4v+'

v4a-4A v+4 '~(95)2 [N2 - 2 da,", + gkvkv]

k= 1--0 Jby/3

wl,-r,1 d2 is fli, neoan ,mia r, (if the, data, Eq. (33), anda ( the interaction niatrix, Alt, is given, by

AIl•Zt +,"k 0 ". k,l1 <_' v, + 4 (6

whetr,. . was dlefina l e Falier. Iq. (35).

Note lH;IM lie1 qjj tila'trix has bo-iu re,,hfined. Int fact lhat is anot (julit tritr . iat lhas be ent.r;il.,,,d.

. ji,, *',, l iboulgh 1his vatalatiou. each sctillo will geieraliz,, Ill.,, ,- i! fre h, lt p ,veil.-
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sect ia Vhfneovvr possible, thase generalized eqlaidtins will use the same notation to represeat

the ,_,I1,V:"zI ed quantitv.
The irtegrals are over all of the V. except ri. I ixel v, behaves like a constatat and Iluust bl,

handled ia a special manner. Separating v) from, tile integration variables one has

J'vjjfJ,( 2, f3,02 , D3,V I) cx J dv \.... 'A1 +. 4] "-(N+.+5)

"~ ex { N2 - 2d,1v~z + 9j)v })
2cr2 (d,47)

x exp 2o 2 r {7

1----0 1=0

k¢= I•j 1A1)

where z was defined earlier, Eq. (37).
E'valuating the v + 4 integrals gives

/'(vjlko, (I (2,C3, a, D, 1) 0C exp vjz + - (98)2a2

as the posterior probability for the jth pixel with
I V

L.== : [d, - qlAt 1J (1 / j)

t=1!by•i

and v+4

h(v)) 4v,)- Y3h,(v)) 2  (i X j) (100)
1=0

where 01t is the ith component of the Ith eigenvector of the jth cofactor of Eq. (96) and A, is tie
zth eigenvalue of this matrix.

If the variance of the noise and the regularizers are actualy known then the problem is completed
and Eq. 198) represents the best estimate of the jth pixel one can make given the three types of

prior information. However, in general er andl .... ,(3, are not known anal lust be determined
from the data.

2.4 Eliminating a As A Nuisance Parameter

The posterior probability for v) independent of (T is computed in a way analngous to what was
done in subsection 1.3. The details of the calculation will not be repeated here. Hlowever, as
a reminder, one must assign a prior probability to the standard deviation (here this is a Jeffreys

prior), and integrate with respect to aT over its valid range of values. Note that we cautioned against
using improper priors in this calculation and this is essential for location lparameters. However,
for the scale parameters (the fractional variance.,, and a) use of improper priors is harmless. This

distribution is given by

S 1a(r1,). h(v,) + 2dfvz - v/J (0

P(mrlo, 1,(2 ,,f.3 ). 1x - (10 )N d2

This is ; Student I-distributito ,arnd tis result will be applied in a rua aeric;d ,xamrpl,. hbui laafr,
it Can h, Uised. t0, f1, '2. auid f i must either hI, kriaiwr fir be estimnaled.
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2.5 I-sti iatiiag The Io hgiilarizotrs

Tlie *I nt I, sterior probability for (1, (2, and ( 3 will be comntputed anti used to set the regularizers.
lit this calhulation (o will be assumed known. This parameter relates to the prior uncertainty about
the amplitudes A, !B, and (C'. It will be assume(] that the experiment was designed in such a way
that is adequate to actually capture the data in question. '[his implie. that one knows the strength
of the signal, at least to order of magnitude and this information was used in setting co. However.
the other three parameters, (1, (2, and (3 relate to how important the prior information is compared
to the data and this is probably not known before actually taking the data. Inferences will have to
be made about these parameters.

To make inferences about these parameters, one uses the rules of probability theory to eliminate
the nuisance parameters from the problem. Here the standard deviation, 0', will be removed from
the posterior probability, and then the rules of probability theory will be used to make inferences
about the three regularizer. This calculation is again essentially identical to what was done in
subsection 1.4 and the details of the calculation will not be given. To proceed a prior for a, (1, Q

andf (3 must be assigned. Hlere a Jeffreys priors will be used for the prior probability for all of the
regularization parameters; one obtains

'((I1,(2,3kjo, D, 1) o ((1(2(3)- (o [ t(El,(2, (3( ,h2,E3) (102)A' ... AtN d2

a.; the joint posterior probability for (1, (2, ani (:I, where

h -c dieli, (103)

by

v+4

1(1F,1 2 ,( 3 ) 1 h(, 2 ,( 3)= 1:hIi(( I,f 2 , 3 )2  (104)

where A...... A',4 -} and cI, are the eigenvalues and eigenvectors of Elq. (96).
lTo illustrate the use of the joint posterior probability, the example begun in the previous

.0)5.0,ction will be continued. For simplicity only prior information about the functional form of
lie vsigidal will bIe used in this example. The data in this example are t lie same data used in Fig. 1.
Ilies,. data lias been repeated in F'ig. 5. The solid line in Fig. 5 is thie estimate of all of the pixel
val ies when .he inaxiinum of the posterior probability is used as the estimate. The dashed lines
trv the. estimated uncertainty in the pixel values in the (mean ± standard deviation) sense. These
esti'dates assn med the value of the regularizer was known.

"To set the regularizer, the posterior probability for (I was computed. This is given by Fig. 6(A ).
Note, Ithat this posterior probability (tensity function has a well defined mnaximum near 3. If one
coiliput tes the mean value ,4 ,1, one finds ( 1) = 7.21. It is this mean value for (I that was used
t(• pulto the estilmates shown in Fig. 5 as the solid line. Note that the estimated signal is flat
Alid in lv very small d,,viations are observed from a constant value. Also note that the estimates
IveOrli the true value of IIht, constant. 5.

Nx t lie posterior probahbility for ur,9 was comptited given that 1 I, see Fig. 6(B). This value,
is rekinivelY far fron thle v;ilii(, indicated by proiability theory. Note tlhat the probability for lOw

lixl- i, broad and sin'ai'.J ,Wn. iuidirat ing that 15"' hs,ý not been well Bstinatd. Hut also nie ,hat
Irum, v;,hli, of 1he pix,,l i., cv ie, d by this postriuil! l'. ,iel (C) of I'i. is the posteriir pri Ii,1Inltv

Ir ei-,, ti~v,, liat Z.2I. II, r th, ' Ow ,stE'ri ,r imin Ii 1hiarper. ;iand lie, pixel ,.t rl -,t i

. ,-



IFigure .3. luterpolation Fum oliial Form Prior Informnation
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Fig. 5. The functional form of the signal was used in the prior probability. Tile maximum of the posterior
probability for the pixels with (7.21 is given by thle solid line. The One-standlard-deviation width of the
posterior is shown as the dotted liues. The data (open circles) are shown for reference.

It is possible to estimate the variance of the noise when (I = I and (I 7.21. When (I I thle
variance of the noise is estimated to be small: (a) = 0.77. When q = 7.21 it is estimated to be
(or) =0.99. When the posterior probability for the pixels is computed, one finds that tile estimate
with the largest estimated noise level has a better determination of the pixels.

Last, note that the * -- start(]ard- deviation erro- bars shown in Fig. 5 are much narrower than
those shown in Fig. 1 . indicating that the constraint onl the functional form was inuch mnore infor-
mativP than the constraint on the second~ derivative. But in both cases the estimates easily overlap
thle true answers at one stanidard dleviation.

3 Deconvolution

Now that the data interpolation problem has b'-en thoroughly addressed, we are inl a position to
proceed to the full deconvolution problem. Fortunately, the preceding sections have essentiallN
solved the (leconvolution problem. As a reminder, in thle deconvolution p~rob~lemf there is a data set
D that is composed of a signal p~luis additive noise:

11N
0 i drr(t. - r)u(r) + ni z 01, + 1,0 2j + 0 ( 105)

where r(Ft. - ) is the impulse response function. Oin a discrete grid, 7 takes onh values only at the
discrete toilit s r, ant l this wfhitation is written

tipsl e i th vl + 1i, of + n when 1, 2:1 + nd . . 1M6)
Vi to b

(a)= .9. Wenth psteio pobbiltyfo te pxes s cmpte, ne ins ha th etiat



'igure 6i: The Posterior Probability for q, and ur9
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1"ig, 6 The post~erior probabila~y for ('I is shown II panel (A). Note that it. rises very sharply and then
ralus,,tr viry slwly The sharp) rise! indicates that the likelihood and the prior .Jointly determine a minuitumy
ý,;luv f,,r #I we'll. But Osc lIkoliltood is uninformat~ive ah•,ut large value~s ,-f f1. The slow drop (AT is just.
the 1/(i ,,.htvv,,r tit tht,. prior. IPael (It0 is the poJsterior probabjility for utr,,j given t~hat (I =- L. Note tthat

the Ior,,b;%,,lity ,% i broad and snvatred (,mt, indicating that ur,,, ba•s not keen w'eil estiniated. Paned (C') is the
i,,,si,.mir pr, 'ai.-lidiy f,,r av,, pvii dial f I ý 7.'21. Iferc 1h.11 ,4,,.teri~ir Is imich .•harper, andti he pixel is 1,ettv.r

o, ,0w,

(13) I I I (C) l ll. .. .



rr(t - r3 )Ar (107)

and Ar is the time interval btween pixel values.
The calhculation for the pi)slerior probability for the pixel values proceeds just as in the previous

sections. The posterior probability for pixel vi is given by

_j(~~-N I V' 2~rt~I
/'(;'I io, i,f1 ,(2,0, , D, I) x dvi '(I/ ) -Nexp -' ' d, - r>kll , (10 )

=I1 k --=f0
by 3

where the prior P(VII) will be taken as Eq. (93). Introduction of the convolution operation only

complicates the direct probability or likelihood, not the prior.

Squaring the likelihood and substituting Eq. (93) for the prior, one obtains

P~v~~oi,,,,.%~l)(:xS ~ a(N+P+S) -O..A44

(109)

x exp Nd-7- 2"VkDk + gktvkv]2a2 ) k=O ;ý

where Olk is a kind of weighted averaged over the data, and is defined as

V

Dk = y 11 (110)

0 otherwise,

the 9kt matrix generalizes to

9k! = Zk7 + SkI, (111)

and Ski defined as

I: r,kr, if 0< k, I <_+ 1

SkI =i (112)

1b 10 oltherwise.

3.1 Eliminating Nuisance Parameters

As observed in subsection 1.3, the pixel being estimated, tvy, behaves as if it were a constant in the

integral, and must be treated specially. This is done by separating v) from the integration variables
to obtain:

P( , 1)I,)( 1, (2.f.3, r, D., ) x I dv ,... (N+v+5) exp d- - 2I r + 1

v,+-4 v,+4 V 44 (113Sexp 2-Y2.Y- E gklvkl - 2 (17, - ),

'10
>3t >¢3 qpjv?' 2 l)t
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v;,lhIatin g the v - , i nt•grals gives

{ -- " -2h(v,)'h(V,)}

P(vI(,(,,1,.(z,(3,(a, D, ) 0( exp 2N.2 - 2dv + g } (114)

as the posterior probability for the jth pixel, where

v+4

1--0
h(vj),- h(vj) - hi(vj), (116)

t---0
I#f3

cli is the ith component of the Ith eigenvector of the jth cofactor of Eq. (111), and Aý is its ith
,igenvalue.

3.2 Eliminating a As A Nuisance Parameter

Computing the posterior probability for ui independent of (r is essentially identical to what was
done in subsection 1.4 and the details of this calculation will not be given here. The posterior
p)robability for jth Ipixel value is given by

I(•)v) h,.,(ti,) + 2Djv, - gIj 2_]

N d2

This is a Student t-distribution and it is this result that is applied in the numerical examples. But
before any numerical calculation may be done (o (1, (2, and (3 must either be known or estimated.

3.3 Estimating The Regularizers

As wis doione previously., will be assumed known and inferences about (1, (2, and (. will be made.
T) proceed, a prior for a. f , f'2 and (3 must be assigned. Here .Jeffreys priors will be used for

all (t the parameters. The prior probability for the pixels was alreadty assigned, Eq. (93), and the
probability for the data is given by Eq. (9). Using these, one obtains the joint posterior probability
for 1I, f2 and (3:

dye ... dvji+4da [0. v4 -Nvs
I[r(2,E,1(O,D, loOi) fx d 0 .....Jx [A(1. 2A3

VIL+4 v'+4

I - ,'+

X |[d• 2 ep{ - k= A

tv 3

wh,,te t ll, .i4 ,nvalu,,... \.. .... .\,, r,)}. are the ,,ti vI,, ,f i t' t. (92. 1. mid u, ifrom !"q. (1)' w.
I , ,4 , t,, i flit, ulirrent itttt0 ti;tr . l .,luititi L, ;ill d, h, inti ,gral, -md dl -!)mid l t .I



AI I - - I A, 2 2 3 1 - I 2.I (
'IlA '(I ...A l,+ 4  (V -a2 I

as tile joint posterior probability for the three fractional variances, where

h 1( (1,( 2, 1 v 4 Dic,, (120)

L,+4

/1(,,3) h (I1, 2.E3)- Ehhi(fI,i 2 , .3 )
2 , (121)

1----

.... .',+4} are the eigenvalues of the gki matrix, Eq. (111), and cl, is the Ith compon ent of the

lth vigenvector of this matrix.

3.4 Examples - Deconvolution

"To illustrate this calculation. sveral deconvolution examples will be given which incorporate differ-
ent types of prior information. In the first example, very little prior information will be available:
all that will be used is a constraint on the smoothness of the function. In the second example, more
prior information will be available, znd the functional form of the signal will he used to constrain
the deconvolution. In the third example, both sets of prior information will be used to constrain
the d(convolution. The data will be simulated sinusoidal data that have been low-pass filtered.
This problem is important in radar target identification, because it is the free space signal that
must be known in the target identification problem.

The signal function will be taken to be a pure sinusoid of known frequency and phase:

u, = 10cos(0.3t,). (122)

HoweveTr, ihis signal has been filtered using a low-pass filter:

r(t,) 1 23)251, (123)
c

where the constant c is given by
N

c = e- 025ti (124)
t=i

and the times t, were taken to he 0. 1 . N - I. Note that the smearing function is defined to
be zero fior times less than f, or greater than tN. The data are a convolution between the signal
function, u(1). and the impulse response function r(t):

N

id, = l0cos(0.3t,)( 25.IlO(li - t1)/c + ,. (125)
)-=I

wheren re, represents noise of iinit standard deviation, and 0(t, - 1j) is the unit step fu nclion.
The filter changes the amiplit ide, of the responww. (Consequentlv, I Ile I inl lodoiain signial iunloise

!i l i iit It W rathor it i'- tiiir,' like 5. A ploIt. ,, I lho i:,l)il-' r'l poil.' t'iiii l i i br t uil. :- li,,W'

i n I i•,, A 1. D ,t a, itiu I10 1t ,i v., weighted - , fi a ll i hl lvpiv( t-di ntý • L'w ;il valueslk. ,A:' ýolil t., I

-;. 2



Figure 7: Deconvolution - The Data
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1);I( k III f ii''. the signii a li' ljo'cmiiii Iess iiitl l''.s implortanit in t his avvrage, fi nall ,v droppllitý to

t'ss'ýtlt 1alv /''ro after 201 sani 11 ii intervals. Tlhe dat a values ( coinvol vedl sign al I noise) aire showni
In I 7i. 1) ~L, the, openi circivs. Thie trio' signal is shiownt as t, le solid l noe in panel 7( B ). [he
CIIVo)llit (ion introduces an elb'c tive amplitudef (lailge aiid phase shift, while I the "noise"' Iiit,rod ices
IunCertaIi Nt about the -1rue" convolved signal.

l'o r"'Iiove the effect of the convolution, a constraint on the second derivative will be used. To
apply' the, po~zterior probability for the pixels, one intist first set the value Oif the regulariZer. T[his

is (1lone h nCRputing the posterior probability for the regularizer given ithe data and the prior
information. E.-q. ( 119). This is shown inI rig. X( A). As in the previous examples, this IpTOlbalility

den t.v fiunction has a well definiedl maximunin near (3I;- 0.8. This inaxiniumi value was uised in1
computing the posterior probability for the pixel values, Eq. ( 117). The maximum of the, posterior
probability for the pixels (solid line) plus or minus one standard deviation (dashed line) is showni
in S(B). The true signal value,, are shown as the plus signs. Notice the true signal is covered almost
everywhere at one standard dleviation. Also note, that there Is a systematic mnisfit in the peaks
and valleys. That is because the prior information tries to make the second derivative as small
as possible. At these turning points the second dlerivative is at its maximnum, so of course the
reconstruction will undershoot the mark here. Last, noie that the reconstruction is bad near time

f=100. But probability theory kriows, Lm,.s and ha-s widened the error bars, so that the true valuev
is Still overlapped at two stand~ar(i 1. iations.

In the second part of this ey- uple. use of the correct functional formn -f the signal will he
investigated. Ilere it will I1 mirmed that the signal must he a cosine with the. known COrreCt

frequency. The posterior probability for the regularizer, Eq. ( 119), is shown in Fig. 9(A). Again
there is a peak near UT - 0.25. '[his value of (I was then used to compute the posterior p~rob~ability
for each of the pixel,~, Eq. ( 117). The maximum of the piosterior prob~ability for each pixel is shown
in Yig 9( B) as the solid line. The one standard (deviation error bars are shown as the dashed Ii es.
The true signal is shown as the plus signs. Note that the reconstruction follows the signal much
more closelv; The true signal is easily covered by the one-standard-dleviation error bars. However.
unlike the previous example this reconstruction does not know about the "smoothness" of thle
function so the reconstruction is jagged, even though it actually fits the data bc-cr. T[his suggest
that these two pieces of prior iniformation could be combined, arid this reconstruction would bev

better than either separately.
lHepeatinrg this example uisinig lboth the second derivative constraint and the functional form oif

t)ýsign al is mnore difficul t because now there a~re two regularizers: (I t tl re~gularizor associa tedl
"'ith the fuinrctional formi, and (I as)sociated with the second derivative co~istrailit. AS InI theV ot her

examples. to compute the posterior probability for a pixel, we must set these regularizers. [his,
is (lone 1y computing the joint posterior probability for the regularizers, Eq. (119). and then
marginalizing over either (I or (3. In Fig. 10 the joint posteriourprobability for these two regiflarizers

haws been plotted. The dashed contours are the base 10 logarithm of P( 1, (:tkn. D. 1). The region
enclosed 1y the contour labeled 9 contains 99'X of the total probability. T[he region enclosed by the

contour labeled 8 contains 99%of the total probability, etc. Thle solid lines inside of contohur 9 is
lie hilly normalized Joint piost erior probability.

[rom this joint, posterior probiability for cl and (., it is possible to compute, the posteprior lprobh-
abili t-v h ir ci ther (I or (3 by uising thle sum rule froin probability theory. [lie 1joe,,t(erior proba hilit v
for _ k iven by

MI'1(0'r 1).I1) /d3/P((i.In.1 D. 1) 1 26i)

.11I



Figure 8: Deconvolution - Second Derivative Constraint
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(If Vach est linatled pixel value (solid line) pils or minus one standard deviation (dashed line). The true values
are sh.own ;Is t, he phils signs

:3r



Figure 9: Deconvolution Functional Form Constraint
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Figure 10: The *Joint Probability for (I and (.
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Figure I 1: )econvolution T'he Estimated Parameters
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Fig. I1 From the joint posterior probability for ( and (, (Fig. 10), one can easily compute the posterior

prob~ability for each iii, panel (A). and (.-I, panel (B). Using the maxima from these marginal distribiutions,
a Standard deviation estimate for the pixel values were computed. The maxima are shown in (C) as the

Solid 1111e. the one-standard-deviation error bars are' shown a~s the dashed lines, and tht, true signal values
-re rivn hy the plus signs.
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;mdl Ii ho posturi',r proba jl)tlitv hIr ti is iwven by

/M(:d+, o.I), !) = d I O f( ],(:si1gn, D. I). H12 7)

T''ose t&,) probability density functions have been plotted in Fig II(A) and (B) respectively. The
peak value tor f I is approximnately 0.35 and for (3 it, is approximat-ly 0.25. These values were used

to compute the posterior probability for the pixels. The peak values are shown in (C) as the solid

line, the one-.standard-(deviation error bars are shown as the dashed lines, and the true signal values

are given by the plus signs. Note that this reconstruction has combined the best features of the

two previous examples: The use of information about the functional form causes the reconstruction

to follow the true signal much more closely, while use of the smoothing constraint has suppressed

inmtch of the random fluctuation.

4 Deconvolution - Generalizations

The results of the preceding calculations can be generalized in a number of ways by allowing more

general types of prior information. When the priors were established for the deconvolution problem.

only one function per type of prior information was allowed. There is no reason why more functions

cannot be allowed, and in many cases the need for them is obvious. For example, suppose f, (the

functional form) were a cosine, then a second function, a sine, is needed to properly express the

ph ase of the siriisold. Additionally, only three pieces of prior in formation were used: one on the

functional forim of the signal, one on its first derivative, and one on its second derivative. Thern

is no reason whvy one could not have more then three pieces of prior information, and these could

constrain more complicated functions of the pixels than just the first and second derivatives

In this section, the deconvolution results presented in the previous sections will be generalized to

allow for any number of pieces of prior information. This information can specify functional forms

containing any number of amplitudes and functions, and these functions will be allowed to constrain

an arbitrary linear combination of the pixels. The total number of pieces of prior information will

Ib, designated as r. Each piece of prior information will be designated as I,,... ,I. For information

it, the cmistraint will be written V+1 + ITIII 2K atiu. - fk(t') = 6 ( 128

8=0 L---0' k=l

where a", is a known ma-rix of coefficients that desicribe how the pixels interact. For examlple, it

coiih(l hescriblo' tie secondl-derivative constraint used earlier. The coefficients A'A are the amnplitudes

I). intensities of the signal functions, and they will be considered as unknown, nuisance parameters.

The constraint functions fk' ;ire the analogue of tit(, functions (fI, f2, and 13) used earlier. However.

there ;ire inp of these functions for each of the r constraints. There are a total of E-ni functions

and ;iinplitudes. Each constraint will have a fractional variance or regularizer associated with it.

Th(-,l, roguilarizers will 1Iw designated as (h.... ... ,. List, note that the suum over discrete times (th,,

i fidex) runrs fr(n o ) u i -' v + 1. So the above, constraint s are writtein implicitly to include the

hi iii darv condit ions.

Coniv•rt.iTi, the /it hm c,instraint into a probablilitY dinsi tY function fuir thi pixels is straightforward
.and r,,ultsl iii
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whr, thl, first term cxpresse,, tOw prior information ;ibout the amplitudes and the second expresses

tlie p)rior information about thli pixels. As in the previous examples. this prior may be converted
into t p)rior with a doubi,, simi: this gives

P'(Vko, M, ) 0 ex, - I-# ZZW1lvkvl ' (130)
k=41 1=0

where

7= v4 1 +- Zmk (131)
k=I

and ( 7-+ 1) is the total number of unknown generalized pixels v,. Following what was done earlier,
these generalized pixels are defined as:

Su, if0<i<v+i

ifv+ 1<i<V+l+"I,

Vi A V- 1-1-1, if V + I + m l I < V + + ±l 11 + M 2 (132)

AT--- v . if v + I + +n .+ + mr- I < < <7.

Last the matrix W" is defined as
WP V - c i + d~t, (133)

where b01, c~k and d'A correspond to the coefficients of the terms obtained by squaring the exponent,
combining all of the terms and carrying out the sum over i. The matrix b'. is just the coefficient
of the first term of the square in Eq. (129), and is given by

V •+1_ , iO kl u l

j'La k lit - - _
k 1 (1341)

0 otherwise.

Note that in setting up the general WIA matrix, the in dices are allowed to take on values 0 <_ kI < Ki,
so in the definition of b' it was necessary to state explicitly that this term is zero when either k
or I was greater than v + 1. The matrix cel corresponds to the coefficient of the cross term, and is
given by

If k < v+ I and v + 1 + ,nh + -+ ny- < 1
and I < v + I + in +...+n 1

V+l wheren =l-1 -v - l ...-in ....-
.atg atf(t') ORtk --- (13,5)

,=1 If I < V+ I and I., + I + ur3 + -. + - ,_ < k

and k< v + I + m+I + + rnt1
where n = k - v 7nI -n i

0 otherwise.

40o



il, Ihird term is the square plus first the prior prflf)bility for tile ampjlitudes, and is defined as

2 + ifV ,l 1 4 fi + < kI

bi *+ an(d k,,l I" v+ I +± 7I + .. + i
(- (t ( where v I k - v - I - m ? ... t- I (136)d , >2~i tand 12 =1V- I -v- I- l..,-l.

otherwise

where 41t is the Kronecker delta function. As was done previously, the individual priors may be
combined to obtain a single prior which expresses all of the prior information. This prior is given
by

S(I( 1. .21a e p 1 7

P(V ,0... ,(r,I) = ... A(27ra)+exp - 2- EE kIVkvI (137)
2a k-- 1--0

where
T 2 W,

Zkl = (138)

and {A0 ... A,,) are the eigenvalues of the ZkI matrix.
The mathematics from the three previous sections may now be repeated to obtain a generalized

result. First, the posterior probability for the jth generalized pixel is given by

/(vj..... o,, D, I) oc exp Nd 2 -2D2v + gajv (139)

where Dj was defined earlier, Eq. (110),

1 17
hE(v [i - gjivjleti (I = j) (140)

h(vj) h(vj) E jhi(vj) (141)
1=0

and A,, A,, are I he eigenvalues of the jth cofactor of the 9kI matrix. The 9kt matrix is defined as

9kI = ZkI + Ski (12)

where Ski was defined in Eq. (112).

Next, the posterior probability for the jth pixel value, independent (f the variance of the noise.
is given by

[ (I)'h(vj) + 2Div -yj2]- i
,. . . I) (x - N - J] (14:1)

I,;st. the joinl llnargiri;d postorior probability for the regularizers is given bI

" ..... 'r o, ). )' " ( )- (• .. ( " " 1" ).( . (r)] (1'14M -)7 "'"--,, - P2 h11

I I



whf'r,, A',. A' are the ,i.genvalues 4f the gjk matrix, Eq. (1.12),

( I r) "h ( . . . r) Z/z((l, .,• ( ,15)

an(I

a.. - Djeii (146)

where in Eqs. (144-146), the eigenvalues {A..... are the eigenvalues of the gjk matrix, Eq. (1.12),
and (,) are its eigenvectors.

Note that care must be taken when interpreting the results of these calculations, because the
notation for the eigenvalues and eigenvectors has not been changed when different matrices were
used. The meaning should remain clear because when each formula is given the matrices being
diagonalized are clearly stated. But just to be clear on this point, when the posterior probability
for the jth pixel is being computed the eigenvalues A.,..., Anu' and eigenvectors ei, refer to the
jth cofactor of the gj,1 matrix. However, when the posterior probability for the regularizers is
computed A'... A', refer to the eigenvalues ot the gk matrix (not thejth cofactor) and ejk refer to
its vigenvectors of g1k.

4.1 Estimating The Pixel Values

It is one thing to formally derive a result and quite another for it to be useful. The posterior
probability for the individual pixels given all of the prior information, Eq. (143), is one of these
types of results. While this result will prove useful in examining individual, important, pixels it is
not the way to estimate all of the pixels. Even if one were to compute this posterior probability
density for all of the pixels, it still would not give one an estimated signal; rather it would tell
one what is actually known about the signal values and the uncertainty in those values. What is
actually needed is an estimate of the pixels and the uncertainty in the estimate.

There are many ways to -stimate a parameter using probability theory and the estimate of
choice will depend on what one stands to lose if one is wrong. Two different types of estimates
are the maximum of the posterior probability, and mean or expected value of a parameter. In
this calculation, the expected value and peak values are the same. Thus an the expected value
and standard deviation estimate for the pixels is readily available and will be used as the pixel
estimates.

The expected value of the ith generalized pixel is given by

(vj(t), ... r a,( 1) = dvo... dt',,v) P(vo, .• , v,,fI0,.-. (r, a, D, 1) (147)

where t he notation (vjIf o..... ,a,, 1) means the expected value of pixel v, given that (0, .. .. , (r,

and ar are known. But note that it is the fully niornmalized joint probability density function that is
to be used. Consequently, when this calculation is performed the probability density function will
hav, to be normalized:

S....r.a) /Normalization xp E- E1)
• ~~k ----- ---o10 1

Normnalizati* m - di.., dv,, exp -exp ---- iZ qklrkr - 2 lit 1 (129)

I 
I 

-
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I'vailiiatun the integrals. Emi, (ldlhfins

(v i ,ko. E.,)->2. (150)
1=0

Similarly the expected mean-square value of the pixels is given by

(vjvklfo,.... va) dvU....dvivivkP(v vtiIEo ., (r, 6, D, I), (151)

and one finds

(vjvkk1O,...,,r, ,- (72) = , ( 2) (152)

From which one would make a (mean ± standard deviation) estimate of

(vi),3 l ± (a) i (153)

Note that while the individual probability distributions would require one to invert a matrix for
each value of v1; the (mean ± standard deviation) estimate may be done for all of the pixels with
a single matrix inversion.

4.2 Estimating The Noise Level

Blefore the above result can he used, ((72) must be computed. To compute (a 2 ), one must evaluate

Wdr) = fo' Or2p(arl(,0,..., c, D, t)dry (154)

where P(al0," - -,( D, I) is the fully normalized posterior probability for ay given the regularizers
annd the data. But using the rules of probability theory, this is just the prior probability for ar times
Ihe probability for the regilarizers given or. So the expectation value may be written as:

(,a2 ) / 2 dr P(all)P(y I, ,I(,, O,a, I). (155)

('Nl,"',(rf(O,a, D.1) cX drm+"+tn-Nexp {N•- . 2 (156)

P(a1l) - (157)

and ( f.....r) h((I.... (r) is given by Eq. (145). The normalization constant needed to ensure
tbat the total probability is one is given by

normalization = daPflall)l'(f ,. , 01). 1). 15X)

Makn•ng the appropriate s.ibs.titutiofs and evahialing lihe integrals •,i es

. " .... , [.V " t,, , M... ..... ,,,]
SI .,:



as •l•e ,-1Imated standard deviation for thee noise.

At Ihis ipoint in the caliulaion it w,,uht ;tlpper that another numerical example is needed

to ilhis t rte these new additionatl caJculations and generalizations. However that is not the case.

because all of the examples given in the text were comrputed by using these final results. That is to

say. all of the computer progranis used in the nunrerical cadculations implemented this generalized
calculatH.rr. To produce any specific example the model functions and the pixel smearing matrices
were changed to produce the do.sired calculation.

5 Summary And Conclusions

Proceeding through stages, this paper has explored the deconvolution problemn in varying degrees of
complexity. In the first two sections, the deconvolution problem was simplified to the interpolation
problem. This problem was then explored to see how varying the prior information affects the

results of the calculation. These calculations illustrate that the interpolation problem is easily
solved by incorporating prior information into the problem. The more cogent the prior information
the better the reconstructions. However, even with very crude prior information probability theory
does not lie. The interpolations always covered the (orrect signal at one and sometimes two standard

deviations.
After obtaining an understanding of the interpolation problem, the calculation was then gener-

alized to include the convolution. Including the convolution did not actually change the results front
the first two sections, it only generalized them. The effect of prior information was then explored
again to show how including different types of prior information affects the results. Again the

results wore essentially identical to what was found in the first two sections: Including more cogent
prior information helps the deconvolution problem; but again when only limited prior information
is available, the results obtained overlapped the correct result at one and sometimes two standard
deviations.

Last, the entire formalism was generalized to include much more arbitrary types of prior in-
formation. This formalism, given in the preceding section, is the only version of the calculation
programmed on the computer. Every example given in this work was essentially an example of the
power of the general calculation presented in the previous section.

This work represents at best. a first initial exploration of the deconwdution problem. Much

remains to be done. For example this work did not address the use of priors outside of the class
of general (aussian priors. While this class is wide, it does not include such priors as the entropy
prior. An interesting problem would be to try to combine the best aspects of both the entropy prior
and the Gaussian priors used in this calculation. Indeed there is some evidence based on work in
other fields that this could be very productive, [281.

Last, this work suggests how to use probability theory to solve other types of outstanding
problems. In particular relatively straightforward modification to this calculation will allow inho-
mog•nneorrs linear differential equalions with either boundary value, initial value, or any other type
of asymptotic condition to be solved. Additionally, using the techniques developed in this paper,

the momnent problem, i.e.. inferring a function frinr a finite number of its moments, should now be

a solvablh, problem. The only chrange in this cahdclation is that the limit as the nroise variance goes

to zoro i: nereded to solve this problem.
If thebre is a single rnajr,i ,crunrplishment for this paper, it was to( demon:trate t hat the r'suIts

one obtaiins depends critically on Owe prior information put into the problem. 1"o put it bluntly, t hier',

is n' suf h thing as a singli,e bst drconvolution. Evorv result fromn a liayesian :dualcul;iir is olly ;I
go, au. tho prior infortyiaitwi ih;ti or-'s iirto it. I Iv, r. every Iavwiani ;dl itl;iti,,n ,i rri,, wit h it
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IIltIiJ' 41 1114dfh i w- IIII(il W vII tie'ý 1,iciilatioii. \Vliil' ,d pri(jrs kill giv- lmor reconstriir tlios.

Jpr4414.[l~it.V I ieorv warnis iine 4[ this by\ mrakiung I hie unicertainity in tile estimlates large (large e'noughl

to li~vor Ih. r liorr .ect value 4)1, 1,11t, signal). So even the resul ts from verv un ainformative priors still
give iuIeaningf~il reconstructions.
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